Assignment: A5
Air-Track: Cursor Tethers
New physics calculation concepts:
e Spring and drag type forces applied to a selected car.
Python language topics:

e Adictionary.
e Adictionary of dictionaries.
e (Concatenating strings.

Problem statement:
(Again, start with a new Python file.)

Add algorithmic content to the previous exercise to enable cursor-tether client interactions with the car objects.

Algorithmic description:

Create a Client class. (This class will eventually be used for multi-client games.) Use the client object to store mouse data
(as Client attributes) as it is extracted from the Pygame event queue. In the Client methods that follow, determine the
mouse state by referring to the Client attributes.

Add a “calc_tether_forces_on_cars” method to the Client class that does the following:

e Ifacaris not already selected, check to see if a car is under the cursor and then select it; if the car is selected but
the mouse button is up, un-select it.

e Ifthe caris selected and the mouse button is down, calculate the forces on the car, based on which of the three
buttons is depressed, and the physics-world separation between the cursor and the car in the x-direction.

Add a second method to the Client class that draws the cursor tether (a line).

In the while loop, use the “calc_tether_forces_on_cars” method to calculate the forces applied by each client on the
cars. (There is only one client at this point.) Do this BEFORE you update the velocity and position of the cars.

AFTER you draw the cars, draw the cursor tether for each client that has selected a car.

Python code: (see images on next few pages)

The following code (image) is not a complete solution to the problem. It shows changes (additional content) relative to
assignment #4. There is no obfuscation this time, but you have to figure out where these pieces of code should go. The
indent levels should be a clue to you. These are not necessarily in order, so of course the neighboring images are not
necessarily a continuation from the image above.

class Client:

def init_ (2elf, cursor3tring color):
self.cursor location px = (0,0) # x px, ¥ px
self.mouse button = 1 $#1, 2, or 3

self.buttonIsS5tillDown = False

self.cursorString color = cursor3tring color

self.zelected car = None

Define the nature of the cursor strings, one for each mouse button.
ngl':{'c drag': 2.0, 'k Hpm': 60.0}%,

g2':{'c_drag': 0.2, 'k Npm': 2.0},
'string3":{'c drag': 20.0, 'k Npm': 1000.0}}

self.mouse strings = {'s

[

3%

def calc_tether forces_on_cars(self):
Calculated the string forces on the selected car and add to the aggregate
that is stored in the car object.

Only check for a selected car if one isn't already selected. This keeps
the car from unselecting if cursor is dragged off the car!
if (self.selected car = None):
if self.buttonIsStillDown:
self.zelected car = air track.checkForCarAtThizPosition(zelf.cursor_ location px)

$# If a car is selected
else:
if not self.buttonIsStillDown:
Unselect the car and bomb out of here.
self.zelected car.selected = False
self.selected_car = Hone
retuorn Hone

If button is down, calculate the forces on the car.
else:
Use dx difference to calculate the hooks law force being applied by the tether line.
$# If you release the mouse button after a drag it will fling the car.
$# Thi=s tether force will diminish as the car gets closer to the mouse point.
dx m = env.m from px(self.cursor_ location px[0]) - self.selected car.center m

stringlame = "string"” + str(zelf.mouse button)
self.selected car.cursorString spring force N += dx m * self.mouse strings[sctringName] ['k_ Npm®]
self.selected car.curscr3tring carDrag force N += (self.selected car.v mps ¥

{-1) * =melf.mouse strings[stringName] ["c drag'])

def draw cursor string(self):
car center xy px = (env.px from m({self.selected car.center m), self.selected car.center y px)
pygame.draw.line (game window.surface, self.cursorString color, car_center xy px, self.cursor location px, 1)

def checkForCarAtThisPosition(self, cursor location xy):
=% px = cursor location xy[0O]
¥_px = cursor location xy[1l]
xz m = env.m from px(x px)
for car in self.cars:
if ({({x m > car.center m - car.halfwidch m) and (x m < car.center m + car.halfwidth m)) and
{(v_px > game window.height px - car.height px)):
car.selected = True
return car
return None

Use v midpoint for drawing the cursor line.

self.center y px = int(round({ float(game window.height px - =elf.height px) + flaat{self.height_px)/2.D})
For use with cursor-tethers selection.

self.selected = False

Reset the aggregate forces.
car.cursorString spring force N = 0O
car.cursor5tring carDrag force N = 0

Calculate client related forces.
for client name in env.clients:
env.clients[client name].calc tether forces_on_cars ()

Add a local (non-network) client to the client dictionary.
self.clients = {'local':Client (THECOLORS["green"])}

elif (event.type — pygame.MOUSEBUTTCHNDOWN) :
self.clients['loczl'] .buttonIsStillDown = True

(buttonl, buttonZ, button3) = pygame.mouse.get pressed()
if buttonl:
gself.clients["loczal’] .mouse button = 1
elif button:
gself.clients["local’] .mouse button = 2
elif button3:
self.clients["local’] .mouse_button = 3
else:
self.clients["local’] .mouse_button = O

elif ewvent.type — pygame .MOUSEBUITCONUP :

self.clients['local'] .buttonIsS5tillDown = False

self.clients['local'] .mouse button = 0

if self.clients['"local'].buttonIsStillDown:
$# If it down, get the cursor position.
self.client=s["local'] .cursor location px = (mouseX, mouseY) = pygame.mouse.get _pos()

Add up 21l the forces on the car.
car forces N = (car.m kg * =self.g mps2) + (car.cursorString spring force N +
car.cursorString_carDrag force N)

Draw cursor strings.
for client_name in env.clients:
if (env.clients[client name].selected car != None):
env.clients[client_name].draw_cursor string()

Aggregate type forces acting on car.
self.cursorString spring force N = 0
self.cursorString carDrag force N = 0O

