Assignment: A4
Air-Track: Car-Car Collisions
New physics calculation concepts:

e Car-Car Collisions:
o Detection of car-car collisions.
o Penetration (overlap) correction.
o Velocity changes caused by car collisions.

The following links give good background theory for the car-car collision physics. However, all that we need in this
assignment is given in the two formulas below.

http://en.wikipedia.org/wiki/Elastic collision#One-dimensional Newtonian

http://en.wikipedia.org/wiki/Inelastic collision

(Note: the formulas below are from the inelastic collision link above)

The formula for the velocities after a one-dimensional collision are:

o Cﬁmb(ub - Ua) + Mg Uy + Myl

Uﬂ —
nmy + my
. Crma(tq — Up) + Moty + Myt
, =
my ‘I‘ my
where

V_ is the final velocity of the first object after impact

vy is the final velocity of the second object after impact

u_ is the initial velocity of the first object before impact

u is the initial velocity of the second object before impact
m_ is the mass of the first object

m, is the mass of the second object

CH is the coefficient of restitution; if it is 1 we have an elastic collision; if it is 0 we have a perfectly inelastic collision,

Notice that in the special case when CR=1 and m_a=m_b, then the equations above reduce tov_a=u_b and v_b=u_ga;
that is, the two cars simply exchange velocities after the collision.

Python language topics:

e Enumerated for loops.
e List slices.

http://en.wikipedia.org/wiki/Elastic_collision#One-dimensional_Newtonian
http://en.wikipedia.org/wiki/Inelastic_collision

Problem statement:
(Again, start with a new Python file.)

Add algorithmic content to the previous exercise to simulate car-car collisions. Have at least three demo keys 1, 2, and
3... At least one of these should have gravity turned on. Add an attribute to the AirTrack class that keeps a running total
of all the collisions.

Demonstrate that your penetration-correction code works by running demos with and without the corrections. First,
convert the two variables (fix_wall_stickiness, fix_car_stickiness) that control this to AirTrack class attributes so that you
can access them outside of the AirTrack class. Remember, you have given the air_track object global scope. Toggle these
two variables (between True and False) through use of the “s” key.

Make a similar toggle for the color_transfer attribute. Toggle this with the “c” key.

Print the collision count and the two attributes out every frame in the while loop.

Algorithmic description:
Collisions: This is an upgrade to the existing collision related code in the air_track class.

e Loop over each car in the car list (use enumeration in this for-loop). Call this car in the list “car”:
o Check for car-wall collisions with the left wall by comparing the position of the left edge of the car
with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.
= Correct for wall penetration (overlap): move the car to the position it would be if had
bounced at the surface and not penetrated. That is, back the car out a distance twice the
amount of the penetration.
= |[fthere is a car-wall collision, reverse the value of the velocity:
e v mps=-1*v_mps*CR
o Have another for-loop over the remaining cars in the car list (use a Python slice). Call this car “ocar”
in the for-loop (for other car). This sub loop will allow us to identify unique car-car pairs without
repeating any. It will also avoid needlessly checking a car for collisions with itself (impossible).
= Check for car-car collisions by comparing the position of the car and the ocar (other car): If
the separation between the cars is less than the sum of the two half-widths, they have
collided and are overlapping (penetrated).
e Correct for car penetration: again, as with the wall collisions, back the position up to
where the cars would be if there was no penetration. Since each car travels at a
different velocity before and after the collision, you must do this in two steps.

o First calculate the penetration time. This is the time needed for the two cars
to reach the position they are at now (at collision detection) from the point
where they would be just touching. This is the penetration distance divided
by the relative velocity between the two cars.
t_pen =x_pen / abs(car.v_mps — ocar.v_mps)

o Next, back up the cars one penetration-time amount of travel at the
incoming velocities (their velocities BEFORE the collision).

o Next, move the cars one penetration-time amount of travel at the outgoing
velocities (their velocities AFTER the collision). Use the equations above to

calculate the velocities after the collision. But, use a CR=1 here to best avoid
stickiness problems.
e Assign the corresponding post-collision velocities to the cars.
o Again, use the equations above to calculate the post-collision velocities, but
here use the actual CR value.

Python code: (see images on next few pages)

The following code (image) is not a complete solution to the problem. It mainly shows changes relative to assignment
#3. The task in the problem statement that relates to the fix_wall_stickiness and fix_car_stickiness variables is not
shown in the version of the code captured in the images below.

def check for collisions(zelf):
Collisions with walls.
Enumerate so can efficiently check car-car collisions below.

fix wall stickiness = True # False True
fix_car_stickiness = True # False True

for i, car in enumerate {self.cars):

Collisions with Left and Right wall.
$ If left-edge of the car is less than... OR If right-edge of car is greater than...
if ((car.center m - car.width_ij.D) < game_ window.left _m) or ((car.center _m + car.width_ij.D) > game window.right_m):

if fix wall stickiness:
self.correct_wall penetrations (car)

car.v_mps = -car.v_mps * self.coef rest_wall

Thi= makes use of the "enumerate"d for loop above.

In doing =so, it avoids checking the self-self case and avoids checking pairs twice
like (2 with 3) and (3 with 2).

$# Example checks: (1 with 2,3,4,5), (2 with 3,4,5), (3 with 4,5), (4 with 5) etc...

Check for overlap with other rectangle.

if (abs(car.center m - ocar.center m) -<| n 1 S | = = wn s lenm w »
if self.color transfer — True:
{car.color, ocar.color) = (ocar.color, car.color)

$# Prevent sticking to other cars.
if fix car stickiness:
3e1f.| L u kcar, ocar)

$# Calculate the new post-collision velocities.

{car.lZl, acar.El) =Elcar_a.nd_ncar_vel_nF'IER_callisian{l:l:-

