
Assignment: A4

Air-Track: Car-Car Collisions

New physics calculation concepts:

• Car-Car Collisions:

o Detection of car-car collisions.

o Penetration (overlap) correction.

o Velocity changes caused by car collisions.

The following links give good background theory for the car-car collision physics. However, all that we need in this

assignment is given in the two formulas below.

http://en.wikipedia.org/wiki/Elastic_collision#One-dimensional_Newtonian

http://en.wikipedia.org/wiki/Inelastic_collision

(Note: the formulas below are from the inelastic collision link above)

Notice that in the special case when CR=1 and m_a=m_b, then the equations above reduce to v_a=u_b and v_b=u_a;

that is, the two cars simply exchange velocities after the collision.

Python language topics:

• Enumerated for loops.

• List slices.

http://en.wikipedia.org/wiki/Elastic_collision#One-dimensional_Newtonian
http://en.wikipedia.org/wiki/Inelastic_collision

Problem statement:

(Again, start with a new Python file.)

Add algorithmic content to the previous exercise to simulate car-car collisions. Have at least three demo keys 1, 2, and

3... At least one of these should have gravity turned on. Add an attribute to the AirTrack class that keeps a running total

of all the collisions.

Demonstrate that your penetration-correction code works by running demos with and without the corrections. First,

convert the two variables (fix_wall_stickiness, fix_car_stickiness) that control this to AirTrack class attributes so that you

can access them outside of the AirTrack class. Remember, you have given the air_track object global scope. Toggle these

two variables (between True and False) through use of the “s” key.

Make a similar toggle for the color_transfer attribute. Toggle this with the “c” key.

Print the collision count and the two attributes out every frame in the while loop.

Algorithmic description:

Collisions: This is an upgrade to the existing collision related code in the air_track class.

• Loop over each car in the car list (use enumeration in this for-loop). Call this car in the list “car”:

o Check for car-wall collisions with the left wall by comparing the position of the left edge of the car

with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.

▪ Correct for wall penetration (overlap): move the car to the position it would be if had

bounced at the surface and not penetrated. That is, back the car out a distance twice the

amount of the penetration.

▪ If there is a car-wall collision, reverse the value of the velocity:

• v_mps = -1 * v_mps * CR

o Have another for-loop over the remaining cars in the car list (use a Python slice). Call this car “ocar”

in the for-loop (for other car). This sub loop will allow us to identify unique car-car pairs without

repeating any. It will also avoid needlessly checking a car for collisions with itself (impossible).

▪ Check for car-car collisions by comparing the position of the car and the ocar (other car): If

the separation between the cars is less than the sum of the two half-widths, they have

collided and are overlapping (penetrated).

• Correct for car penetration: again, as with the wall collisions, back the position up to

where the cars would be if there was no penetration. Since each car travels at a

different velocity before and after the collision, you must do this in two steps.

o First calculate the penetration time. This is the time needed for the two cars

to reach the position they are at now (at collision detection) from the point

where they would be just touching. This is the penetration distance divided

by the relative velocity between the two cars.

t_pen = x_pen / abs(car.v_mps – ocar.v_mps)

o Next, back up the cars one penetration-time amount of travel at the

incoming velocities (their velocities BEFORE the collision).

o Next, move the cars one penetration-time amount of travel at the outgoing

velocities (their velocities AFTER the collision). Use the equations above to

calculate the velocities after the collision. But, use a CR=1 here to best avoid

stickiness problems.

• Assign the corresponding post-collision velocities to the cars.

o Again, use the equations above to calculate the post-collision velocities, but

here use the actual CR value.

Python code: (see images on next few pages)

The following code (image) is not a complete solution to the problem. It mainly shows changes relative to assignment

#3. The task in the problem statement that relates to the fix_wall_stickiness and fix_car_stickiness variables is not

shown in the version of the code captured in the images below.

