
Assignment: A3

Air-Track: Gravity and Wall Collisions

New physics calculation concepts:

• Wall collisions:

o Detection of wall collisions.

o Velocity changes caused by wall collisions.

• Gravity:

o Forces (like gravity) cause a rate of change in the velocity (acceleration). The average velocity over the

time step is then used to calculate the change in position.

The algorithm outlined below for calculating position as affected by forces and acceleration is based on

Euler’s method:

http://en.wikipedia.org/wiki/Euler_method

Euler’s method is the simplest of the Runge-Kutta methods:

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method

o Mass. This is a calculated property based on the density and dimensions of the car. Mass is needed to

calculate the force of gravity on an object.

Python language topics:

• If tests

• For loops

• Lists

(Note: the links to Python tutorials are in A01_game_loop_and_events.pdf.)

Problem statement:

(Again, start with a new Python file!)

Add algorithmic content to the previous exercise to simulate wall collisions and the force of gravity. Again, have a

feature to demonstrate your code. Have at least three demo keys 1, 2, and 3... At least one of these should have gravity

turned on.

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method

Algorithmic description:

Gravity: (this should be added to the update_SpeedandPosition method of the air_track)

• Characterize gravity as the component along the tilted track. (Note: a level track has no component of

gravity along the track.) This component will be some small fraction of normal gravity because tilted air

tracks usually have a relatively small tilt angle. Something like one 20th of normal g is a realistic component

value.

o g_mps2 = 9.8/20.0

• Have this gravity value be an attribute of the air_track object.

• Use Newton’s law (a = F/m) to calculate the acceleration and associated change in velocity during the time

step. Then calculate the change in position based on the average velocity during the time step:

o total_force_on_car_N = m_kg * g_mps2 + 0.0 + 0.0 + 0.0

o a_mps2 = total_force_on_car_N / m_kg

o v_end_mps = v_mps + (a_mps2 * dt)

o v_avg_mps = (v_mps + v_end_mps)/2

o x_m = x_m + (v_avg_mps * dt)

o v_mps = v_end_mps

Collisions: (this should be a new method of the air_track. Call this method from the main game loop so that it gets

executed in each frame).

• Loop over each car in the car list.

o Check for car-wall collisions with the left wall by comparing the position of the left edge of the car

with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.

▪ Correct for wall penetration (overlap): move the car to the position it would be if had

bounced at the surface and not penetrated. That is, back the car out a distance twice the

amount of the penetration.

▪ If there is a car-wall collision, reverse the value of the velocity:

• v_mps = -1 * v_mps * CR

Figure 1. Car-wall collision. The numbers mark

the sequence. The blue rectangles illustrate the

car approaching the wall; green rectangles

illustrate the car rebounding off the wall. The

blue and green rectangles are shown vertically

separated for clarity. The dotted-line blue

rectangle #3 shows the detected collision (an

overlap with the wall); this rectangle is not

drawn in the game loop. Rectangle #4 shows

the corrected position of the car; this rectangle

is drawn. The corrected position is where the

car would be if it had bounced at the surface

instead of penetrating the wall.

Python code: (see images on next few pages)

The following code (image) is not a complete solution to the problem. It shows changes relative to assignment #2.

A couple updates to the make_some_cars method.

An update to a portion of the main() function.

