Assignment: A3
Air-Track: Gravity and Wall Collisions
New physics calculation concepts:

e Wall collisions:
o Detection of wall collisions.
o Velocity changes caused by wall collisions.
e Gravity:
o Forces (like gravity) cause a rate of change in the velocity (acceleration). The average velocity over the
time step is then used to calculate the change in position.

The algorithm outlined below for calculating position as affected by forces and acceleration is based on
Euler’s method:
http://en.wikipedia.org/wiki/Euler method

Euler’s method is the simplest of the Runge-Kutta methods:
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta _method

o Mass. This is a calculated property based on the density and dimensions of the car. Mass is needed to
calculate the force of gravity on an object.

Python language topics:

o |[ftests
e Forloops
o Lists

(Note: the links to Python tutorials are in AO1_game_loop_and_events.pdf.)

Problem statement:
(Again, start with a new Python file!)

Add algorithmic content to the previous exercise to simulate wall collisions and the force of gravity. Again, have a
feature to demonstrate your code. Have at least three demo keys 1, 2, and 3... At least one of these should have gravity
turned on.

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method

Algorithmic description:
Gravity: (this should be added to the update_SpeedandPosition method of the air_track)

e Characterize gravity as the component along the tilted track. (Note: a level track has no component of
gravity along the track.) This component will be some small fraction of normal gravity because tilted air
tracks usually have a relatively small tilt angle. Something like one 20" of normal g is a realistic component
value.

o g _mps2=9.8/20.0

e Have this gravity value be an attribute of the air_track object.

e Use Newton’s law (a = F/m) to calculate the acceleration and associated change in velocity during the time
step. Then calculate the change in position based on the average velocity during the time step:

total_force_on_car N=m_kg*g mps2 + 0.0 + 0.0 + 0.0

a_mps2 =total_force_on_car_N/ m_kg

v_end_mps=v_mps + (a_mps2 * dt)

v_avg_mps = (v_mps +Vv_end_mps)/2

X _m=x_m+ (v_avg_mps * dt)

O O O O O O

v_mps =v_end_mps

Collisions: (this should be a new method of the air_track. Call this method from the main game loop so that it gets
executed in each frame).

e Loop over each car in the car list.
o Check for car-wall collisions with the left wall by comparing the position of the left edge of the car
with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.
= Correct for wall penetration (overlap): move the car to the position it would be if had
bounced at the surface and not penetrated. That is, back the car out a distance twice the
amount of the penetration.
= [fthere is a car-wall collision, reverse the value of the velocity:
e v mps=-1*v_mps*CR

Figure 1. Car-wall collision. The numbers mark

the sequence. The blue rectangles illustrate the
car approaching the wall; green rectangles

illustrate the car rebounding off the wall. The 1 2
blue and green rectangles are shown vertically

separated for clarity. The dotted-line blue

rectangle #3 shows the detected collision (an
overlap with the wall); this rectangle is not

drawn in the game loop. Rectangle #4 shows 6 5 4
the corrected position of the car; this rectangle

is drawn. The corrected position is where the

car would be if it had bounced at the surface
instead of penetrating the wall.

Python code: (see images on next few pages)

The following code (image) is not a complete solution to the problem. It shows changes relative to assignment #2.

class AirTrack:

def

def

def

] def

_ __{=elf):

Initialize the list of cars.
self.cars = []

zelf.carCount = 0

Coefficients of restitution.

self.coef rest base = 0.20 # Useful for reseting things.
self.coef rest car = self.coef rest base
self.coef_rest_wall = self.coef_ rest_base

Component of gravity along the length of the track.
self.gbase_mps2 = 9.8/20.0 # one 20th of g.

zelf.g mps2 = self.gbase mps2

self.color_transfer = False

update SpeedandPosition(self, car, dt_s):

Add up all the forces on the car.
car forces N = (car.m kg * self.g mps2) + 0.0 + 0.0

Calculate the acceleration based on the forces and Newton's law.

car acc mps2z = ‘) = Lol |

Calculate the velocity at the end of this time step.

v_end mps = | " il [g, =

Calculate the average velocity during this timestep.
v_avg_mps=+ e E o s g |

Use the average velocity to calculate the new position of the car.
Physics note: v_avg*t is equivalent to (v*t + (1/2) *acc*t"2)

car.center m = | n - | s

Assign the final velocity to the car.

check for collisions(self):

Collisions with walls.
Enumerate so can efficiently check car-car collisions below.

fix_wall_stickiness = True # False Trues
for car in self.cars:

Collisions with Left and Right wall.
E If left-edge of the car is less than... OR If right-edge of car is greater than...

if ((car.center m - car.width_me.D} < game window.left m) or L] NS ECE JE N NS GEE SN W PN SEE R E0 gEen |

if fix wall stickiness:
self.correct_wall penetrations(car)

car.v mps = = m " m = = |

correct _wall penetrations(self, car):

penitration left x m = game window.left m - E - car.halfwidth_m)

if penitration left x m > O:

car.center m += 2 * |- " EE EEE Ew = -|
penitration right x m = (car.center m + car.halfwidth m) - P []
if | n | | |> 0:

car.center m -= 2 % penitration right x m

class Detroit:
def 1

__{=elf, color=THECOLORS["
self.color = color

self.height px = height_px
self.tcop px

game window.height px - self.height px
self.width _px = width_px

self.width m = env.m from px(width px)
self.nalfwidth m = self.width_mfz .0

self.neight m = env.m from px(width px)

Initialize the position and wvelocity of the car. These are affected by the

physics calcs in the Track.
self.center m = env.m from px(left_px) + self.halfwidth m
self.v mps = Vv _mps

self.density kgpm? = €00.0
self.m kg = self.height m * self.width m * |mel =ee u cm—

Increment the car count.
air track.carCount 4= 1
Name this car based on this air track attribute.

self.name = air track.carCount

Create a rectangle object based on these dimensions
Left: distance from the left edge of the screen in px.
Top: distance from the top edge of the screen in px.

self.rect = pygame.Rect(left px, self.top px, self.width px, self.height px)

A couple updates to the make_some_cars method.

] def make_some_cars(self, nmode):
$# Update the caption at the top of the pygame window frame.
game window.update caption("Rir Track (basic): Demo #" + str(nmod

1 if (nmode =— 1):
air track.g mps2 = 0
air track.carCount = 0O
self.cars.append(Detroit (color=THECOLORS["red"], left px =
self.cars.append(Detrolit (color=THECOLORS["blu="], left px =

] elif (nmode = 2):
air track.g mps2 = air track.gbase mps2
air track.carCount = 0
self.cars.append(Detroit (color=THECOLORS["yel]

1, left _px

self.cars.append(Detroit (color=THECOLORS["green"], left_px =
1 elif (nmode =— 3):
air_ track.carCount = 0O

air track.g mps2 = 0
self.cars.append(Detroit (color=THECOLORS["vel] 1, left _px
self.cars.append(Detroit (color=THECOLORS["green™], left px

An update to a portion of the main() function.

e})

240, width px=26, v_mps=

2"], left px=10, width px=26&, height px=098, v_mps=l):

340, width px=26, v _mps= -0

= 240,
440,

= 240,
= 440,

width px=26,
width px=50,

width px=26,
width px=:0,

Update welocity and x position of each car based on the dt_s for this frame.

for car in air track.cars:
air track.update SpeedandPosition(car, dt_s)

Check for collisions and apply collision physics to determine resulting

velocities.
air track.check for collisions()

V_mps=
V_mps=

¥_mps=
V_mps=

0.2))

-2))

-0

-0
-0

-1))
-2))

-1))
-2))

