
Assignment: A2

The Air-Track Framework

This assignment establishes the algorithmic framework (the Python classes) that will be used in the air-track and the air-

table projects. This also introduces two basic calculation concepts:

• Time-based position calculations (our first dose of physics) and,

• The meters of the physics “World” and the pixels of the display screen, and converting back and forth between

them.

(I’ll have an air-track set up in the lab in case you’ve never had a chance to use one.)

Python language topics:

• Code blocks and indenting (a review).

• Functions: what they do and what they return.

• Classes:

o Methods;

o Properties;

o Instantiation: creation and initialization of an instance (an object).

• Namespace and the “main” function.

• Floating-point and integer numbers:

o Rounding of floating-point numbers.

(Note: the links to Python tutorials are in A01_game_loop_and_events.pdf.)

Problem statement:

(First, be sure and start with a new Python file! You can use (copy and paste) stuff from the first exercise, but don’t edit

in your original copy of the previous exercise. That should be your pattern for each assignment: start a new file.)

Write a program to animate two rectangular objects (cars) in a one-dimensional space like an air-track.

Have the following controls:

1. The “esc” key to quit;

2. The number keys, “1” and “2”, should be used to start each of two demos (without restarting the program). The

two demos should differ in the initial position, velocity, and color of each of the cars.

Algorithmic description:

• Import content from modules.

• Define classes and functions.

o GameWindow

▪ Attributes: dimensions of the screen, and the display surface object.

▪ Methods:

• Initialize;

• Set caption;

• Erase screen.

o Detroit

▪ Attributes: car dimensions, position, speed, and rectangle object.

▪ Methods:

• Initialize;

• Draw this car.

o AirTrack

▪ Attributes: the list of cars.

▪ Methods:

• Update car speed and position based on physics;

• Make (instantiate) some cars based on demo mode.

o Environment

▪ Attributes: pixels-to-meters ratio, meters-to-pixels ratio.

▪ Methods:

• Pixels-to-meters conversion;

• Meters-to-pixels conversion.

• Initialize the program

o Initialize the first demo: build (instantiate) two cars, and initialize their position and velocity.

• The main game loop:

o Erase the surface.

o Establish the time step dt_s.

o Check for user input: to quit, or to change demo mode.

o Update the speed and x position of each car based on the time step for this frame.

▪ position += velocity * dt_s

o Draw each car at its new position

▪ Convert from meters to pixels.

▪ Then draw it.

o Update the total time since starting (we don’t actually use this yet but will later).

o Make this update visible on the screen.

Python code: (see images on next few pages)

Here again, this code solution is provided (as an image) in the assignment statement. Some parts of the image have

been obfuscated; you’ll have to fill in the blanks to get this to run. Later in the course, code solutions will be provided as

text files a day or two after the assignment is given.

