Assignment: A2
The Air-Track Framework

This assignment establishes the algorithmic framework (the Python classes) that will be used in the air-track and the air-
table projects. This also introduces two basic calculation concepts:

e Time-based position calculations (our first dose of physics) and,
o The meters of the physics “World” and the pixels of the display screen, and converting back and forth between
them.

('l have an air-track set up in the lab in case you’ve never had a chance to use one.)
Python language topics:

e Code blocks and indenting (a review).
e Functions: what they do and what they return.
e Classes:
o Methods;
o Properties;
o Instantiation: creation and initialization of an instance (an object).
e Namespace and the “main” function.
e Floating-point and integer numbers:
o Rounding of floating-point numbers.

(Note: the links to Python tutorials are in AO1_game_loop_and_events.pdf.)
Problem statement:

(First, be sure and start with a new Python file! You can use (copy and paste) stuff from the first exercise, but don’t edit
in your original copy of the previous exercise. That should be your pattern for each assignment: start a new file.)

Write a program to animate two rectangular objects (cars) in a one-dimensional space like an air-track.
Have the following controls:

1. The “esc” key to quit;
2. The number keys, “1” and “2”, should be used to start each of two demos (without restarting the program). The
two demos should differ in the initial position, velocity, and color of each of the cars.

Algorithmic description:

e Import content from modules.
e Define classes and functions.
o GameWindow
= Attributes: dimensions of the screen, and the display surface object.
= Methods:

e Initialize;

e Set caption;
e Erase screen.
o Detroit
= Attributes: car dimensions, position, speed, and rectangle object.
= Methods:
e Initialize;
e Draw this car.

o AirTrack
= Attributes: the list of cars.
= Methods:

e Update car speed and position based on physics;
o Make (instantiate) some cars based on demo mode.
o Environment
= Attributes: pixels-to-meters ratio, meters-to-pixels ratio.
= Methods:
e Pixels-to-meters conversion;
e Meters-to-pixels conversion.

e Initialize the program
o Initialize the first demo: build (instantiate) two cars, and initialize their position and velocity.
e The main game loop:
Erase the surface.

o Establish the time step dt_s.
o Check for user input: to quit, or to change demo mode.
o Update the speed and x position of each car based on the time step for this frame.

= position += velocity * dt_s
o Draw each car at its new position
= Convert from meters to pixels.
= Thendrawit.
Update the total time since starting (we don’t actually use this yet but will later).
o Make this update visible on the screen.

Python code: (see images on next few pages)

Here again, this code solution is provided (as an image) in the assignment statement. Some parts of the image have
been obfuscated; you’ll have to fill in the blanks to get this to run. Later in the course, code solutions will be provided as
text files a day or two after the assignment is given.

[LT L T % I O B S
[y

[T O T O N B

3]

[}
=]

L3 G L L L
tn

[H R ST U L I FU L
R A T =]

[*
L

n

tn &N noin

s R

1

(R .

[P R I 1=]

s

o

(=T

[

[T T W o =1 oy Ln s

o

1 & tn

L R O

T

'

H Bython
import sys, os
import pygame
import datetime

PyGame Constants

from pygame.locals import *

from pygame.color import THECOLORS

¥

% Classes

¥

class GameWindow:

def

def

def

__initc_ (self, screen_tuple px):
self.width px = screen_tuple px[C]
self.height px = screen tuple px[1]

Create a reference to display's surface object. This object is a pygame

Screen dimensions in pixels (tuple)

self.surface = [mo. ESe———— N EEE BN CEEET EEE - .

Paint screen black.
self.erase and update()

update caption{self, title):

pygame . disssee seEs Sem s mEcE

self.capc il ']

erase and update (self):
Useful for shifting between the warious demos.

self.surfacs I'si-a IEEESEina
pygame.disgh o "0 §

class Detroit:

def

gelf.color = color

init (self, color=THECCOLORS["white"], left px=10, width px=26, height px=953, speed mps=1}:

self.height px = heimss ==
| |

self.cop pxX gamff

self.width px = widps gm

u .. I. R EE rl .I

self.width m = env.m from px(width px)
self.halfwidth m = self.width_mj2.ﬂ

self.height m = env.m from px(width px)

Initialize the position and speed of the car.

These are affected by the

physics calcs in the Track.

self.center m = env.m from px({left px) +|u=]

zelf.speed mps = speed nps

oo o &y nonononon
[LT I S T ¥ TR 1 &

[FUR C I

13

]
oL

(Ve

[w5)
-]

o o o o o o o o o o o o o o o o o
o T Y S L T o I T B & = [y T o BT O L % T T

[Te)
[&5)

[Te)
(Ve

def

Create a rectangle object based on these dimensions
$# Left: distance from the left edge of the screen in px.
$# Top: distance from the top edge of the screen in px.

self.rect = pygame.Rect(left px, self.top px, self.width px, self.height px)

draw car(self):

$# Update the pixel position of the car's rectangle object to match the wvalue

$# controlled by the physics calculations.

self.rect.centerx = env.px from m(self.

Draw the main rectangle.

pygame .draw.rect (game window.surface, E . self.rect)

class AlirTrack:

def

def

def

__init (self}:
$# Initialize the list of cars.
zelf.cars = []

update SpeedandPosition(self, car, dt_s):
$# Calculate the new physical car position

car.center m = car.center m + ™ LT T

make some cars(zelf, nmode):
$# Update the caption at the top of the pyvgame window frame.
game window.update caption("Air Track (basic): Demo #" + str(nmode))

if (nmode = 1):
self.cars.append{ Detroit (color=THECOLORS["red" 1], EEgE
self.cars.append{ Detroit (color=THECOLORS["kblu=s"], |&= =

elif (nmode =— 2):
self.cars.append(Detroit (color=THECOLORS["v == W ™
self.cars.append{ Detroit (color=THECOLORS["green"] mE g

'II 1-

class Environment:

def

init (self, length px, length m):
length m/ffloat{length px)
{float (length px)/length m)

self.px to m

self.m to px

Convert from meters to pixels

def

px_from m{self, dx m):
retorn int(round(dx m * self.m to px))

Convert from pixels to meters

def

def

m from px(self, dx px):
retorn float (dx px) * self.px to m

get local user input (self):

T T B

;%]

%]

%]

%]

Mo s L

1%}

3]

(LS T % R]
== L

[%]

[Ve Ve T W O O 6 O - O

(RN s}
[%]

(¥5]

(¥5]

I A Ta Y S

w w w

e |

L

(5 5]

¥=]
o

]
]

]

-l

-l

-]

]

]

F T LY S T

[%]

(SR T= =]

o n

]

[T S &

[¥5]

$# Make =some cars (run demo #1).

air_track.h N rEEE EeE E

Instantiate clock to help control the framerate.

myclock = pygame.time.Clock()

Control the framerate.

framerate limit = 400

time s = 0.0

user done = IE'

while not user done:

Erase everything.

game window.surface.fill "b;ac]-:" 1)

Get the delta t for one frame (this changes depending on system load) .

dt 2 = |L.FF = e o Em—— . my o

$# Check for user initiated stop or demo change.

resetmode = env.hl u . e Bl
if {(resetmode in [0,1,2,3,4,5,6,7,8,9]):
print "reset mode =", resetmode

$# This should remowve all references to the
air track.cars = []

$# Now just black everything out and update

ga.m.e_w:i.ndcnw. era*— =

$ Build new set of cars based on the reset
air track.make some cars(resetmode)

elif (resetmode =— 'guit'):
user done = IE'
elif (resetmode != None):

print resetmode

cars and effectively deletes them.

the screen.

mode .

$ Update speed and x position of each car based on the dt_s for this frame.

for car in air track.cars:

air_track.update_‘1*r Hi . |

$# Draw the car at the new position.
for car in air track.cars:

$# Update the total time =ince starting.
cane 2 +=[=r |

Make this update wisible on the screen.

pygame .display. IE'

#
$# Run the main program.

