
Assignment: A1 (back to main page)

Introduction to Pygame

This first assignment is intended to get you started in the development environment and introduce you to most of the

basic concepts of Pygame. Here is an outline of topics to be covered:

1. Installation and demonstration of the development environment.

a. Python, Pygame, Notepad++

b. Windows Command Prompt (run your script)

c. Python command prompt

2. Notepad++ (the editing environment).

a. Basic editing tips.

b. Starting and debugging programs from Notepad++.

3. Pygame basics:

a. Importing modules and initializing Pygame.

b. Game window and surfaces.

c. Drawing or blitting to a surface.

d. Rectangles, circles, lines, and polygons.

e. Flipping (updating) the display.

f. The event queue.

4. Python:

a. Statements.

b. Looping.

c. Conditional branching and Boolean logic.

d. Using Pygame objects: methods and parameters.

e. Tuples and lists.

f. Printing to the command window.

g. Breaking code to see what kind of error messages result.

Note: You may find these Python tutorials handy references throughout the course.

https://docs.python.org/3/tutorial/index.html

The following link is the documentation page for Pygame. Notice the links in the green box at the top of the page. This is

a quick way to check out the parameters that are needed when calling Pygame methods.

http://www.pygame.org/docs/index.html

The following tutorial from Simpson College on arcade games is excellent.

http://programarcadegames.com/

Problem statement:

Write a Python program that draws a ball (circle) in the Pygame window at the position of the mouse cursor. Have

features to control:

• The erasing of the screen (the “e” key);

https://pet.timetocode.org/index.html?pygame
https://docs.python.org/3/tutorial/index.html
http://www.pygame.org/docs/index.html
http://simpson.edu/computer-science
http://programarcadegames.com/

• The updating of the display (the “f” key);

• The color of the ball (the left and right mouse buttons).

Algorithmic description:

• Initialize objects and variables.

• Initially fill the Pygame window with the color white.

• Until the user decides to quit, repeatedly execute the following statements:

o Check for user input: characterize the keyboard and mouse-button events in the event queue. Then also

get the cursor position.

o If the “e” key is down, fill the Pygame window with grey color (this erases everything).

o Choose a color for the ball based on which mouse-button is depressed:

▪ If left button is down, use yellow.

▪ If right button is down, use red.

▪ Otherwise, if no button is depressed, use blue.

o Draw a ball (circle) at the cursor position.

o Update the total time by adding the differential time.

o Print to the command window:

▪ Total time

▪ Differential time between frames

▪ Frame rate

o If the “f” key is not down, update the Pygame window (i.e., make the rendering actions above visible in

the window).

Spend some time associating (reading and jumping back and forth between) the problem, the algorithm, and the Python

code. Then start typing up the code from the provided image below in to a Python text file (“.py” extension). Run it and

play with the features of the code. Try breaking the code and seeing what you get in terms of error messages. Try

adapting the code to do something a little different.

Python code: (see images on next two pages)

This first week an example code solution is provided (as an image) in the assignment statement. Normally, code

solutions will be provided as text files a day or two after the assignment is given.

